Fate of COVID-19 Occurrences in Wastewater Systems: Emerging Detection and Treatment Technologies—A Review

Author:

Kweinor Tetteh EmmanuelORCID,Opoku Amankwa MarkORCID,Armah Edward Kwaku,Rathilal SudeshORCID

Abstract

The coronavirus (COVID-19) pandemic is currently posing a significant threat to the world’s public health and social-economic growth. Despite the rigorous international lockdown and quarantine efforts, the rate of COVID-19 infectious cases remains exceptionally high. Notwithstanding, the end route of COVID-19, together with emerging contaminants’ (antibiotics, pharmaceuticals, nanoplastics, pesticide, etc.) occurrence in wastewater treatment plants (WWTPs), poses a great challenge in wastewater settings. Therefore, this paper seeks to review an inter-disciplinary and technological approach as a roadmap for the water and wastewater settings to help fight COVID-19 and future waves of pandemics. This study explored wastewater–based epidemiology (WBE) potential for detecting SARS-CoV-2 and its metabolites in wastewater settings. Furthermore, the prospects of integrating innovative and robust technologies such as magnetic nanotechnology, advanced oxidation process, biosensors, and membrane bioreactors into the WWTPs to augment the risk of COVID-19’s environmental impacts and improve water quality are discussed. In terms of the diagnostics of COVID-19, potential biosensors such as sample–answer chip-, paper- and nanomaterials-based biosensors are highlighted. In conclusion, sewage treatment systems, together with magnetic biosensor diagnostics and WBE, could be a possible way to keep a surveillance on the outbreak of COVID-19 in communities around the globe, thereby identifying hotspots and curbing the diagnostic costs of testing. Photocatalysis prospects are high to inactivate coronavirus, and therefore a focus on safe nanotechnology and bioengineering should be encouraged.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3