Effect of Inclination Angles on the Local Scour around a Submerged Cylinder

Author:

Wang Shaohua,Yang Shiyu,He Zhiguo,Li LiORCID,Xia YuezhangORCID

Abstract

In ocean engineering and coastal environmental studies, local scour around a submerged structure is a typical issue, which is affected by the inclination of the structure. To investigate the effect of inclination directions and angles on flow structure and the bed morphology, a three-dimensional numerical model of a submerged inclined cylinder was established. In this model, the hydrodynamics are solved from the RANS (Reynolds-averaged Navier–Stokes) equations closed with the RNG k-ε turbulence model, while the bed morphology evolution is captured by the sediment transport model. In the case of vertical-cylinder scour, the simulation results agree well with existing laboratory experiments. In the cases of inclined-cylinder scour, the results show that the inclination direction not only changes the intensity and the location of the downflow but also modulates the pattern of the horseshoe vortex in front of the cylinder, thus influencing the local scour depth and the morphology of the bed. Compared with the case of vertical cylinder, the scour around an upstream-inclined cylinder is deeper, mainly due to the enhancement of downflow in front of the cylinder. The scour around a downstream-inclined cylinder is shallower and broader due to the weakened downflow and accelerated incoming flow. The maximum scour depth decreases with the inclination angle in the downstream-inclination case. In the upstream-inclination case, the maximum scour depth does not vary monotonously with the inclination angle, which results from a competitive effect of the horseshoe vortex and downflow in the front of the cylinder.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3