Author:
Wang Ping,Feng Hongyinping,Zhang Guisheng,Yu Daizong
Abstract
An accurate, reliable and stable air quality prediction system is conducive to the public health and management of atmospheric ecological environment; therefore, many models, individual or hybrid, have been implemented widely to deal with the prediction problem. However, many of these models do not take into consideration or extract improperly the period information in air quality index (AQI) time series, which impacts the models’ learning efficiency greatly. In this paper, a period extraction algorithm is proposed by using a Luenberger observer, and then a novel period-aware hybrid model combined the period extraction algorithm and tradition time series models is build to exploit the comprehensive forecasting capacity to the AQI time series with nonlinear and non-stationary noise. The hybrid model requires a multi-phase implementation. In the first step, the Luenberger observer is used to estimate the implied period function in the one-dimensional AQI series, and then the analyzed time series is mapped to the period space through the function to obtain the period information sub-series of the original series. In the second step, the period sub-series is combined with the original input vector as input vector components according to the time points to establish a new data set. Finally, the new data set containing period information is applied to train the traditional time series prediction models. Both theoretical proof and experimental results obtained on the AQI hour values of Beijing, Tianjin, Taiyuan and Shijiazhuang in North China prove that the hybrid model with period information presents stronger robustness and better forecasting accuracy than the traditional benchmark models.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献