Abstract
Achieving reliable pressure-driven analysis (PDA) results that account for anomalies within water-pipe networks requires a head-outflow relationship (HOR) model that can calculate supply flow rate according to the supply pressure at each node. Many studies have suggested HOR models, but a methodology to define HORs that considers the actual residential environment of users and differing water-supply methods for residential buildings has not yet been proposed. This study considered water-use data from buildings and actual differences in residential environments in a surveyed area (including building heights, topography, and water systems within buildings) and water-supply methods (indirect/direct water supply, existence of a pump within buildings) to develop a methodology and derive a representative HOR for the target area for PDA. Further, a representative HOR was determined for each block by applying the developed methodology for two blocks with similar residential environments but different water-use patterns. It confirmed that the HOR induced through this process could provide high water-supply performance despite a low supply head and needed to reflect the diversity of the water-supply method. The proposed HOR-definition methodology can be easily applied in water-pipe network design and operation processes and ensure objectivity and rationality of HOR selection to yield reliable PDA results.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献