Spatial Simulation Modeling of Settlement Distribution Driven by Random Forest: Consideration of Landscape Visibility

Author:

Zheng Minrui,Tang Wenwu,Ogundiran AkinwumiORCID,Yang Jianxin

Abstract

Settlement models help to understand the social–ecological functioning of landscape and associated land use and land cover change. One of the issues of settlement modeling is that models are typically used to explore the relationship between settlement locations and associated influential factors (e.g., slope and aspect). However, few studies in settlement modeling adopted landscape visibility analysis. Landscape visibility provides useful information for understanding human decision-making associated with the establishment of settlements. In the past years, machine learning algorithms have demonstrated their capabilities in improving the performance of the settlement modeling and particularly capturing the nonlinear relationship between settlement locations and their drivers. However, simulation models using machine learning algorithms in settlement modeling are still not well studied. Moreover, overfitting issues and optimization of model parameters are major challenges for most machine learning algorithms. Therefore, in this study, we sought to pursue two research objectives. First, we aimed to evaluate the contribution of viewsheds and landscape visibility to the simulation modeling of - settlement locations. The second objective is to examine the performance of the machine learning algorithm-based simulation models for settlement location studies. Our study region is located in the metropolitan area of Oyo Empire, Nigeria, West Africa, ca. AD 1570–1830, and its pre-Imperial antecedents, ca. AD 1360–1570. We developed an event-driven spatial simulation model enabled by random forest algorithm to represent dynamics in settlement systems in our study region. Experimental results demonstrate that viewsheds and landscape visibility may offer more insights into unveiling the underlying mechanism that drives settlement locations. Random forest algorithm, as a machine learning algorithm, provide solid support for establishing the relationship between settlement occurrences and their drivers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference81 articles.

1. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica

2. Relating Land Use and Global Land-Cover Change;Turner,1993

3. Conserving Biodiversity in Agricultural Landscapes: Model-Based Planning Tools;Swihart,2004

4. The Swarm Simulation System and Individual-Based Modeling;Hiebeler,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3