Machine Learning Classifier-Based Metrics Can Evaluate the Efficiency of Separation Systems

Author:

Kenyeres Éva1ORCID,Kummer Alex1ORCID,Abonyi János1ORCID

Affiliation:

1. HUN-REN-PE Complex Systems Monitoring Research Group, Department of Process Engineering, University of Pannonia, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary

Abstract

This paper highlights that metrics from the machine learning field (e.g., entropy and information gain) used to qualify a classifier model can be used to evaluate the effectiveness of separation systems. To evaluate the efficiency of separation systems and their operation units, entropy- and information gain-based metrics were developed. The receiver operating characteristic (ROC) curve is used to determine the optimal cut point in a separation system. The proposed metrics are verified by simulation experiments conducted on the stochastic model of a waste-sorting system.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Reference38 articles.

1. On separation efficiency;Cussler;AIChE J.,2012

2. Discrete element numerical simulation of fly ash triboelectrostatic separation in a nonlinear electric field;Haoran;Adv. Powder Technol.,2021

3. Size separation in vibrated granular matter;Kudrolli;Rep. Prog. Phys.,2004

4. Modeling and Simulation of Modern Industrial Screens using Discrete Element Method (Technical Note);Mirzaei;Int. J. Eng.,2013

5. On thermodynamic separation efficiency: Adsorption processes;Lively;AIChE J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3