Male-Specific Sequence in Populus simonii Provides Insights into Gender Determination of Poplar

Author:

Wang Ziyue1,Lei Yijing1,Liu Guanqing23ORCID,Ning Yihang1,Ni Runxin1,Zhang Tao23ORCID,Xi Mengli1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China

2. Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China

3. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China

Abstract

The genus Populus is composed of dioecious woody plants and adult females produce large numbers of seed hairs that can affect public health and pose a potential fire risk. However, it is difficult to distinguish between males and females based on their morphology at the seedling stage. Therefore, developing a technology that identifies the gender of poplar seedlings is crucial for controlling seed hairs. In this study, we developed an approach for the early gender identification of Tacamahaca and Aigeiros species based on the male-specific sequence in Populus simonii. The gender of Tacamahaca and Aigeiros species can be accurately identified by PCR. The sequencing results showed that the male-specific sequence was conserved in P. simonii and its F1 progenies. Interestingly, there were three nucleobase differences between Tacamahaca and Aigeiros species. Sequence alignment showed that the male-specific sequence had not been assembled on the pseudochromosome. Subsequently, fluorescence in situ hybridization (FISH) was used to locate this specific sequence at the short arm end of chromosome 19 in male P. simonii. This study provides an efficient and convenient method for early gender determination of Tacamahaca and Aigeiros species and lays the groundwork for exploring key sex-determination genes.

Funder

STI 2030-Major Projects

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3