Application of Artificial Neural Networks for Power Load Prediction in Critical Infrastructure: A Comparative Case Study

Author:

Aliyari Mostafa1,Ayele Yonas Zewdu2

Affiliation:

1. Faculty of Information Technology, Engineering and Economics, Østfold University College, 1757 Halden, Norway

2. Department of Built Environment, Oslo Metropolitan University, 0130 Oslo, Norway

Abstract

This article aims to assess the effectiveness of state-of-the-art artificial neural network (ANN) models in time series analysis, specifically focusing on their application in prediction tasks of critical infrastructures (CIs). To accomplish this, shallow models with nearly identical numbers of trainable parameters are constructed and examined. The dataset, which includes 120,884 hourly electricity consumption records, is divided into three subsets (25%, 50%, and the entire dataset) to examine the effect of increasing training data. Additionally, the same models are trained and evaluated for univariable and multivariable data to evaluate the impact of including more features. The case study specifically focuses on predicting electricity consumption using load information from Norway. The results of this study confirm that LSTM models emerge as the best-performed model, surpassing other models as data volume and feature increase. Notably, for training datasets ranging from 2000 to 22,000 instances, GRU exhibits superior accuracy, while in the 22,000 to 42,000 range, LSTM and BiLSTM are the best. When the training dataset is within 42,000 to 360,000, LSTM and ConvLSTM prove to be good choices in terms of accuracy. Convolutional-based models exhibit superior performance in terms of computational efficiency. The convolutional 1D univariable model emerges as a standout choice for scenarios where training time is critical, sacrificing only 0.000105 in accuracy while a threefold improvement in training time is gained. For training datasets lower than 22,000, feature inclusion does not enhance any of the ANN model’s performance. In datasets exceeding 22,000 instances, ANN models display no consistent pattern regarding feature inclusion, though LSTM, Conv1D, Conv2D, ConvLSTM, and FCN tend to benefit. BiLSTM, GRU, and Transformer do not benefit from feature inclusion, regardless of the training dataset size. Moreover, Transformers exhibit inefficiency in time series forecasting due to their permutation-invariant self-attention mechanism, neglecting the crucial role of sequence order, as evidenced by their poor performance across all three datasets in this study. These results provide valuable insights into the capabilities of ANN models and their effective usage in the context of CI prediction tasks.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3