Performance and Nutritional Properties of Einkorn, Emmer and Rivet Wheat in Response to Different Rotational Position and Soil Tillage

Author:

Costanzo Ambrogio,Amos Dominic C.,Dinelli Giovanni,Sferrazza Rocco E.,Accorsi Giacomo,Negri LorenzoORCID,Bosi Sara

Abstract

Einkorn, emmer, and rivet are three species of wheat that have largely been neglected in modern agriculture. There is a revived interest in these species as potentially successful alternatives to mainstream wheat in organic and low-input cropping systems and as sources of highly nutritious food. However, the availability of literature studies concerning rotational positions and soil tillage management is still scarce. The aim of this study was to explore the field (cover, disease resistance, yield) and quality performance (protein, fats, fiber, polyphenols, flavonoids, and antioxidant activity) of these species when organically grown in the United Kingdom. As part of the H2020 DIVERSIFOOD project, different cultivars of each species, including landraces, populations, old varieties, and where available, commercial varieties, were included in the experiment. Rotational position and tillage systems significantly affected the main agronomic performance of the minor cereals investigated, suggesting that low fertility and shallow-non-inversion tillage might be suitable options to manage tall species. Emmer showed the highest incidence of foliar diseases, whereas einkorn and rivet wheat appeared quasi-immune to the main fungal diseases (stripe rust, septoria). In addition, nutritional and nutraceutical investigation showed that the rotational position and soil management also affect metabolic pathways differently by species and within species, by genotype. Our results suggest a good potential to introduce these species in sustainable cropping systems. Furthermore, the interesting species and cultivar-by-management interactions observed can pave the way for future, better focused, research on these underutilized and underexplored species.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3