An Evidential Model for Environmental Risk Assessment in Projects Using Dempster–Shafer Theory of Evidence

Author:

Hatefi ,Basiri ,Tamošaitienė

Abstract

One of the goals of sustainable development is to achieve economic and social growth according to environmental criteria. Nowadays, impact assessment is an efficient decision making method in planning and management with environmental perspectives. Environmental risk assessment is a tool to reduce the impacts and consequences of various activities on the environment in order to achieve sustainable development. One of the commonly used environmental risk assessment methods is the probability–impact matrix method, which is known as a quantitative method for risk assessment of projects. In this method, numerical estimates of probability and impact of risk occurrence are very difficult, and these factors are associated with uncertainty. When uncertainty exists, data integration is of great importance, for which the fuzzy inference system and evidence theory are known as effective methods. Unavailability of experts’ opinion and the exponential growth of the number of required fuzzy rules associated with the risk factors are two drawbacks of fuzzy inference. Dempster–Shafer’s theory of evidence is one of the popular theories used in intelligent systems for modeling and reasoning under uncertainty and inaccuracy. In this paper, an evidential model for project environmental risk assessment is proposed based on the Dempster–Shafer theory, which is capable of taking into account the uncertainties. The proposed model is used to assess the environmental risks of Maroon oil pipelines in Isfahan. In addition, the proposed model is used in the case of tunneling risk assessment taken from the subject literature. To evaluate the validity of the proposed evidential model, the results are compared in two case studies, with the results of the conventional risk assessment method and the fuzzy inference system method. The comparative results show that the proposed model has a high potential for project risk assessment under an uncertain environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3