Evaluation of the Non-Darcy Effect of Water Inrush from Karst Collapse Columns by Means of a Nonlinear Flow Model

Author:

Xue Yi,Teng TengORCID,Zhu Lin,He Mingming,Ren Jie,Dong Xun,Liu Fei

Abstract

Karst collapse columns (KCCs) are naturally formed geological structures that are widely observed in North China. Given their influence on normal mining operations and the progress of mining work, collapse columns pose a hidden danger in coal mining under the influence of manual mining. By communicating often with the aquifer, the water inrush from KCCs poses a serious threat to construction projects. This paper adopts three flow field models, namely, Darcy aquifer laminar flow, Forchheimer flow, and Navier–Stokes turbulent flow, based on the changes in the water inrush flow pattern in the aquifer and laneway, and uses COMSOL Multiphysics software to produce the numerical solutions of these models. As the water inrush flow velocity increases, the Forchheimer flow shows the effect of additional force (inertial resistance) on flow in KCCs, in addition to the effect of viscous resistance. After the joint action of viscous resistance and inertial resistance, the inertial resistance ultimately dominates and gradually changes the water inrush from the KCCs to fluid seepage. Forchheimer flow can comprehensively reflect the nonlinear flow process in the broken rock mass of KCCs, demonstrate the dynamic process from the Darcy aquifer to the final tunnel turbulence layer, and quantitatively show the changes in the flow patterns of the water inrush from KCCs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3