Abstract
Photodegradation (photolysis) causes the breakdown of organic pesticides molecules by direct or indirect solar radiation energy. Flucetosulfuron herbicide often encounters water bodies. For this reason, it is important to know the behavior of the compound under these stressed conditions. In this context, photodegradation of flucetosulfuron, a sulfonylurea-based herbicide, has been assessed in aqueous media in the presence of photocatalyst TiO2 and photosensitizers (i.e., H2O2, humic acid, and KNO3) under the influence of ultraviolet (UV) irradiation. The influence of different water systems was also assessed during the photodegradation study. The photodegradation followed the first-order reaction kinetics in each case. The metabolites after photolysis were isolated in pure form by column chromatographic method and characterized using the different spectral data (i.e., XRD, IR, NMR, UV-VIS, and mass spectrometry). The structures of these metabolites were identified based on the spectral data and the plausible photodegradation pathways of flucetosulfuron were suggested. Based on the findings, photocatalyst TiO2 with the presence of ultraviolet irradiation was found effective for the photodegradation of toxic flucetosulfuron residues under aqueous conditions.
Subject
Pollution,Pharmacology,Toxicology
Reference37 articles.
1. Flucetosulfuron: A new sulfonylurea herbicide;Kim,2003
2. Herbicidal action mechanism of flucetosulfuron;Kim;Korean J. Weed Sci.,2006
3. Benzophenyl urea insecticides – useful and eco-friendly options for insect pest control
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献