Optimizing Nitrogen Fertilization for Enhanced Rice Straw Degradation and Oilseed Rape Yield in Challenging Winter Conditions: Insights from Southwest China

Author:

Wang Hongni1,Nabi Farhan12ORCID,Sajid Sumbal13,Kama Rakhwe2ORCID,Shah Syed Muhammad Mustajab1,Wang Xuechun1

Affiliation:

1. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

2. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

3. Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China

Abstract

The crop straw returning to the field is a widely accepted method to utilize and remediate huge agricultural waste in a short period. However, the low temperatures and dry conditions of the winter season in Southwest China can be challenging for the biodegradation of crop straw in the field. With a similar aim, we designed a short-term study where rice straw was applied to the field with different concentrations of nitrogen (N) fertilizer while keeping phosphorus (P) constant; CK, (N0P0); T1, (N0P90); T2, (N60P90); T3, (N120P90); and T4, (N180P90) were added to evaluate its impact on straw degradation during cold weather. We found that high fertilization (T4) significantly improved crop yield, organic matter, and lignocellulose degradation under cold temperatures (21.5–3.2 °C). It also significantly improved soil nitrogen agronomic efficiency, nitrogen use efficiency, and nitrogen physiological efficiency. The yield was highest in T4 (1690 and 1399 kg/ha), while T3 acted positively on soil lignocellulolytic enzyme activity, which in turn resulted in higher degradation of OM and lignocellulosic material. Pearson’s correlation analysis revealed that total nitrogen, total phosphorus, available nitrogen, and available phosphorus were important variables that had a significant impact on soil EC, bulk density, water holding capacity, and soil enzymes. We found that nitrogen application significantly changed the soil bacterial community by increasing the richness and evenness of lignocellulolytic bacteria, which aided the degradation of straw in a short duration. This study’s finding indicates that the decomposition of crop straw in the field under cold weather stress was dependent on nutrient input, and N, in an appropriate amount (N120-180), was suitable to achieve higher yield and higher decomposition of straw in such an environment.

Funder

Sichuan Science and Technology program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3