A Many-Objective Evolutionary Algorithm Based on Dual Selection Strategy

Author:

Peng Cheng1,Dai Cai1,Xue Xingsi2ORCID

Affiliation:

1. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

2. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou 350118, China

Abstract

In high-dimensional space, most multi-objective optimization algorithms encounter difficulties in solving many-objective optimization problems because they cannot balance convergence and diversity. As the number of objectives increases, the non-dominated solutions become difficult to distinguish while challenging the assessment of diversity in high-dimensional objective space. To reduce selection pressure and improve diversity, this article proposes a many-objective evolutionary algorithm based on dual selection strategy (MaOEA/DS). First, a new distance function is designed as an effective distance metric. Then, based distance function, a point crowding-degree (PC) strategy, is proposed to further enhance the algorithm’s ability to distinguish superior solutions in population. Finally, a dual selection strategy is proposed. In the first selection, the individuals with the best convergence are selected from the top few individuals with good diversity in the population, focusing on population convergence. In the second selection, the PC strategy is used to further select individuals with larger crowding distance values, emphasizing population diversity. To extensively evaluate the performance of the algorithm, this paper compares the proposed algorithm with several state-of-the-art algorithms. The experimental results show that MaOEA/DS outperforms other comparison algorithms in overall performance, indicating the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundations of China

China Postdoctoral Science Foundation

Industrial Research Project of Science and Technology in Shaanxi Province

Fundamental Research Fund for the Central Universities

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3