Spatio-Temporal Fractal Dimension Analysis from Resting State EEG Signals in Parkinson’s Disease

Author:

Ruiz de Miras Juan12ORCID,Derchi Chiara-Camilla2,Atzori Tiziana2,Mazza Alice2,Arcuri Pietro2,Salvatore Anna2,Navarro Jorge2,Saibene Francesca Lea2ORCID,Meloni Mario2,Comanducci Angela23

Affiliation:

1. Software Engineering Department, University of Granada, 18071 Granada, Spain

2. IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy

3. Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy

Abstract

Complexity analysis of electroencephalogram (EEG) signals has emerged as a valuable tool for characterizing Parkinson’s disease (PD). Fractal dimension (FD) is a widely employed method for measuring the complexity of shapes with many applications in neurodegenerative disorders. Nevertheless, very little is known on the fractal characteristics of EEG in PD measured by FD. In this study we performed a spatio-temporal analysis of EEG in PD using FD in four dimensions (4DFD). We analyzed 42 resting-state EEG recordings comprising two groups: 27 PD patients without dementia and 15 healthy control subjects (HC). From the original resting-state EEG we derived the cortical activations defined by a source reconstruction at each time sample, generating point clouds in three dimensions. Then, a sliding window of one second (the fourth dimension) was used to compute the value of 4DFD by means of the box-counting algorithm. Our results showed a significantly higher value of 4DFD in the PD group (p < 0.001). Moreover, as a diagnostic classifier of PD, 4DFD obtained an area under curve value of 0.97 for a receiver operating characteristic curve analysis. These results suggest that 4DFD could be a promising method for characterizing the specific changes in the brain dynamics associated with PD.

Funder

Spanish Government

Italian Ministry of Health

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3