Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm

Author:

Long Houyun1,Li Guang1,Zhou Fenglin1ORCID,Chen Tengfei1

Affiliation:

1. School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412001, China

Abstract

Intelligent manufacturing requires robots to adapt to increasingly complex tasks, and dual-arm cooperative operation can provide a more flexible and effective solution. Motion planning serves as a crucial foundation for dual-arm cooperative operation. The rapidly exploring random tree (RRT) algorithm based on random sampling has been widely used in high-dimensional manipulator path planning due to its probability completeness, handling of high-dimensional problems, scalability, and faster exploration speed compared with other planning methods. As a variant of RRT, the RRT*Smart algorithm introduces asymptotic optimality, improved sampling techniques, and better path optimization. However, existing research does not adequately address the cooperative motion planning requirements for dual manipulator arms in terms of sampling methods, path optimization, and dynamic adaptability. It also cannot handle dual-manipulator collaborative motion planning in dynamic scenarios. Therefore, in this paper, a novel motion planner named RRT*Smart-AD is proposed to ensure that the dual-arm robot satisfies obstacle avoidance constraints and dynamic characteristics in dynamic environments. This planner is capable of generating smooth motion trajectories that comply with differential constraints and physical collision constraints for a dual-arm robot. The proposed method includes several key components. First, a dynamic A* cost function sampling method, combined with an intelligent beacon sampling method, is introduced for sampling. A path-pruning strategy is employed to improve the computational efficiency. Strategies for dynamic region path repair and regrowth are also proposed to enhance adaptability in dynamic scenarios. Additionally, practical constraints such as maximum velocity, maximum acceleration, and collision constraints in robotic arm applications are analyzed. Particle swarm optimization (PSO) is utilized to optimize the motion trajectories by optimizing the parameters of quintic non-uniform rational B-splines (NURBSs). Static and dynamic simulation experiments verified that the RRT*Smart-AD algorithm for cooperative dynamic path planning of dual robotic arms outperformed biased RRT* and RRT*Smart. This method not only holds significant practical engineering significance for obstacle avoidance in dual-arm manipulators in intelligent factories but also provides a theoretical reference value for the path planning of other types of robots.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3