Investigation of Camera-Free Eye-Tracking Glasses Compared to a Video-Based System

Author:

Zafar Abdullah1ORCID,Calderon Claudia Martin1ORCID,Yeboah Anne Marie2,Dalton Kristine2,Irving Elizabeth2,Niechwiej-Szwedo Ewa1

Affiliation:

1. Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. School of Optometry & Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

Technological advances in eye-tracking have resulted in lightweight, portable solutions that are capable of capturing eye movements beyond laboratory settings. Eye-tracking devices have typically relied on heavier, video-based systems to detect pupil and corneal reflections. Advances in mobile eye-tracking technology could facilitate research and its application in ecological settings; more traditional laboratory research methods are able to be modified and transferred to real-world scenarios. One recent technology, the AdHawk MindLink, introduced a novel camera-free system embedded in typical eyeglass frames. This paper evaluates the AdHawk MindLink by comparing the eye-tracking recordings with a research “gold standard”, the EyeLink II. By concurrently capturing data from both eyes, we compare the capability of each eye tracker to quantify metrics from fixation, saccade, and smooth pursuit tasks—typical elements in eye movement research—across a sample of 13 adults. The MindLink system was capable of capturing fixation stability within a radius of less than 0.5∘, estimating horizontal saccade amplitudes with an accuracy of 0.04∘± 2.3∘, vertical saccade amplitudes with an accuracy of 0.32∘± 2.3∘, and smooth pursuit speeds with an accuracy of 0.5 to 3∘s, depending on the pursuit speed. While the performance of the MindLink system in measuring fixation stability, saccade amplitude, and smooth pursuit eye movements were slightly inferior to the video-based system, MindLink provides sufficient gaze-tracking capabilities for dynamic settings and experiments.

Funder

National Sciences and Engineering Research Council of Canada

Accessible Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3