One-Pot Synthesized Visible Light-Driven BiOCl/AgCl/BiVO4 n-p Heterojunction for Photocatalytic Degradation of Pharmaceutical Pollutants

Author:

Akbarzadeh RokhsarehORCID,Asadi AnvarORCID,Oviroh Peter Ozaveshe,Jen Tien-ChienORCID

Abstract

A novel enhanced visible light absorption BiOCl/AgCl/BiVO4 heterojunction of photocatalysts could be obtained through a one-pot hydrothermal method used with two different pH solutions. There was a relationship between synthesis pH and the ratio of BiOCl to BiVO4 in XRD planes and their photocatalytic activity. The visible light photocatalytic performances of photocatalysts were evaluated via degradation of diclofenac (DCFF) as a pharmaceutical model pollutant. Furthermore, kinetic studies showed that DCF degradation followed pseudo-first-order kinetics. The photocatalytic degradation rates of BiOCl/AgCl/BiVO4 synthesized at pH = 1.2 and pH = 4 for DCF were 72% and 47%, respectively, showing the higher activity of the photocatalyst which was synthesized at a lower pH value. It was concluded that the excellent photocatalytic activity of BiOCl/AgCl/BiVO4 is due to the enhanced visible light absorption formation of a heterostructure, which increased the lifetime of photo-produced electron–hole pairs by creating a heterojunction. The influence of pH during synthesis on photocatalytic activity in order to create different phases was investigated. This work suggests that the BiOCl/AgCl/BiVO4 p-n heterojunction is more active when the ratio of BiOCl to BiVO4 is smaller, and this could be achieved simply by the pH adjustment. This is a promising method of modifying the photocatalyst for the purpose of pollutant degradation under visible light illumination.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3