Manufacture and Performance of Welds in Creep Strength Enhanced Ferritic Steels

Author:

Parker JonathanORCID,Siefert John

Abstract

Welding is a vital process required in the fabrication of ‘fracture critical’ components which operate under creep conditions. However, often the procedures used are based on ‘least initial cost’. Thus, it is not surprising that in many high energy applications, welds are the weakest link, i.e., damage is first found at welds. In the worst case, weld cracks reported have had catastrophic consequences. Comprehensive Electric Power Research Institute (EPRI) research has identified and quantified the factors affecting the high temperature performance of advanced steels working under creep conditions. This knowledge has then been used to underpin recommendations for improved fabrication and control of creep strength enhanced ferritic steel components. This review paper reports background from this work. The main body of the review summarizes the evidence used to establish a ‘well engineered’ practice for the manufacture of welds in tempered martensitic steels. Many of these alternative methods can be applied in repair applications without the need for post-weld heat treatment. This seminal work thus offers major benefits to all stakeholders in the global energy sector.

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. The Influence of Steel Making and Processing Variables on the Microstructure and Properties of Creep Strength Enhanced Ferritic (CSEF) Steel Grade 91,2014

2. Metallurgical and Stress State Factors Which Affect the Creep and Fracture Behavior of 9% Cr Steels

3. Life Management of 9%Cr Steels: Evaluation of Metallurgical Risk Factors in Grade 91 Steel Parent Material,2018

4. Creep performance of a grade 91 header

5. The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3