Water Uptake and Transport Properties of La1−xCaxScO3−α Proton-Conducting Oxides

Author:

Lesnichyova Alyona,Stroeva Anna,Belyakov Semyon,Farlenkov AndreyORCID,Shevyrev Nikita,Plekhanov Maksim,Khromushin Igor,Aksenova Tatyana,Ananyev Maxim,Kuzmin Anton

Abstract

In this study, oxide materials La1−xCaxScO3−α (x = 0.03, 0.05 and 0.10) were synthesized by the citric-nitrate combustion method. Single-phase solid solutions were obtained in the case of calcium content x = 0.03 and 0.05, whereas a calcium-enriched impurity phase was found at x = 0.10. Water uptake and release were studied by means of thermogravimetric analysis, thermodesorption spectroscopy and dilatometry. It was shown that lower calcium content in the main phase leads to a decrease in the water uptake. Conductivity was measured by four-probe direct current (DC) and two-probe ascension current (AC) methods at different temperatures, pO2 and pH2O. The effects of phase composition, microstructure and defect structure on electrical conductivity, as well as correlation between conductivity and water uptake experiments, were discussed. The contribution of ionic conductivity of La1−xCaxScO3−α rises with decreasing temperature and increasing humidity. The domination of proton conductivity at temperatures below 500 °C under oxidizing and reducing atmospheres is exhibited. Water uptake and release as well as transport properties of La1−xCaxScO3−α are compared with the properties of similar proton electrolytes, La1−xSrxScO3−α, and the possible reasons for their differences were discussed.

Funder

Russian Science Foundation

Ministry of Education and Science of the Republic of Kazakhstan

Government of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3