Author:
Zhou Qihong,Lin Liqun,Chen Ge,Du Zhaoqun
Abstract
This paper provides a new method for predicting the diameter of electrospun nanofibers. Based on the grey system theory, the effects of polyacrylonitrile mass fraction, voltage, flow rate, and receiving distance on fiber diameter were studied. The GM(1,1) (grey model) model and DNGM(1,1) (The DNGM (1,1) model is based on the whitening differential equation using parameters to Directly estimate the approximate Non-homogeneous sequence Grey prediction Model) model were established to predict fiber diameter by a single-factor change, and the results showed high prediction accuracy. The multi-variable grey model MGM(1,n) (MGM(1,n) is a Multivariate Grey prediction Model) was used for prediction of fiber diameter when multiple factors change simultaneously. The results showed that the average modeling fitting error is 8.62%. The background value coefficients of the MGM(1,n) model were optimized, the average modeling fitting error was reduced to 1.01%, and the average prediction error was reduced to 1.33%. Combining the fractional optimization with the background-value coefficient optimization, the optimal background-value coefficient α and the order r were selected. The results showed that the average modeling fitting error is 0.85%, and the average prediction error is 0.38%. The results demonstrate that the grey system theory can effectively predict the diameter of polyacrylonitrile electrospinning fibers with high prediction accuracy. This theory can increase the control of nanofiber diameters in production.
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献