Study on Microstructure and Mechanical Properties of WC-10Ni3Al Cemented Carbide Prepared by Different Ball-Milling Suspension

Author:

Zhang Minai,Cheng Zhun,Li Jingmao,Qu ShengguanORCID,Li XiaoqiangORCID

Abstract

In this paper, WC-10Ni3Al cemented carbides were prepared by the powder metallurgy method, and the effects of ball-milling powders with two different organic solvents on the microstructure and mechanical properties of cemented carbides were studied. We show that the oxygen in the organic solvent can be absorbed into the mixed powders by ball-milling when ethanol (CH3CH2OH) is used as a ball-milling suspension. This oxygen leads to the formation of α-Al2O3 during sintering, which improves the fracture toughness, due to crack deflection and bridging, while the formation of η-phase (Ni3W3C) inhibits the grain growth and increases the hardness. Alternatively, samples milled using cyclohexane (C6H12) showed grain growth during processing, which led to a decrease in hardness. Therefore, the increase of oxygen content from using organic solvents during milling improves the properties of WC-Ni3Al composites. The growth of WC grains can be inhibited and the hardness can be improved without loss of toughness by self-generating α-Al2O3 and η-phase (Ni3W3C).

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure and wear performance of a WC-8Co hard alloy modified using W powders doped with Y2O3;International Journal of Refractory Metals and Hard Materials;2023-11

2. Significantly elevated strength of W-Ni3Al alloy by adding trace boron element;International Journal of Refractory Metals and Hard Materials;2023-02

3. Improved mechanical properties of tungsten alloy by flaky Ni3Al and trace B2O3 synergistic reinforcement;Journal of Alloys and Compounds;2022-11

4. High-energy ball milling of WC-10Co: Effect of the milling medium and speed on the mechanical properties;International Journal of Refractory Metals and Hard Materials;2022-04

5. HV-KIC property charts of cemented carbides: A comprehensive data collection;International Journal of Refractory Metals and Hard Materials;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3