Cooperative Exploration Model of Coal–Gallium Deposit: A Case Study of the Heidaigou Coal–Gallium Deposit in the Jungar Coalfield, Inner Mongolia, China

Author:

Zhang Yun1ORCID,Wei Yingchun12ORCID,Cao Daiyong12ORCID,Li Xin1,Wei Jinhao1ORCID,Xu Laixin1,Dong Bo1,Xu Tengyue1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

2. State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Beijing 100083, China

Abstract

Gallium (Ga) is a typical scattered trace element that is irreplaceable in strategic sectors such as national defense, wireless communications, new materials, renewable energy, and healthcare. The coal–Ga deposit is an important complement to traditional Ga resources and has become a significant focus for Ga mineral resource exploration. Therefore, there is an urgent need to research the coal–Ga cooperative exploration model from both technical and economic perspectives. Taking the Heidaigou coal–Ga deposit as an example, the enrichment zone of coal–Ga is predominantly situated in the northern part of the exploration area, adjacent to the fault zone. The Ga concentration demonstrates a gradual decline from the north–central region towards the northeast and southeast. Similar vertical Ga distribution patterns are observed in adjacent drillings, with notably higher concentrations in the roof, floor, and parting layers. The cooperative exploration model for coal–Ga deposits is proposed based on the above features. The model employs a comprehensive set of cooperative technical methods, such as remote sensing, geological mapping, seismic exploration, drilling, petrogeochemistry, and well logging. The layout of exploration engineering and the concentration of Ga provide the basis for the estimation of Ga resources. Additionally, the model provides an important scientific basis for the improvement of the strategic coordination ability of Ga mineral resources.

Funder

National Key Research and Development Plan of China

National Natural Science Foundation of China

Special Project for Geological development of Ningxia in 2023

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3