Thermal Maturity Constraint Effect and Development Model of Shale Pore Structure: A Case Study of Longmaxi Formation Shale in Southern Sichuan Basin, China

Author:

Shi Xuewen12,Wu Wei12,Xu Liang12,Yin Yingzi12,Yang Yuran12,Liu Jia12,Yang Xue12,Li Yanyou12,Wu Qiuzi12,Zhong Kesu12,Wu Yonghui34ORCID

Affiliation:

1. Shale Gas Research Institute, Petrochina Southwest Oil & Gas Field Company, Chengdu 610051, China

2. Sichuan Provincial Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610051, China

3. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China

4. Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

When the thermal maturity of the Longmaxi Formation in the southern Sichuan Basin is too high, the pore structure of shale becomes poor. Therefore, to investigate the effect of organic matter thermal maturity on shale pore structure, a study was conducted. Using the Longmaxi Formation shale in the southern Sichuan Basin as an example, the intrinsic relationship between shale porosity, pore structure parameters, organic matter laser Raman maturity, and organic matter graphitization degree was examined using X-ray photoelectron spectroscopy, particle helium porosity measurement, organic matter micro-laser Raman spectroscopy, and gas adsorption experiments. The results indicate that thermal maturity is the macroscopic manifestation of the graphitization degree of organic matter, and the correlation coefficient between the two is 0.85. A thermal maturity of 3.5% (with a corresponding organic matter graphitization degree of 17%) aligns with the highest values of shale porosity, pore volume, and pore-specific surface area across all pore size conditions. The evolution model of shale pore structure can be divided into two stages. The first stage is characterized by a thermal maturity between 2.0% and 3.5% (with a corresponding degree of graphitization of organic matter between 0% and 17%). During this stage, the number and connectivity of micro-macropores increase with increasing thermal maturity. The second stage is marked by a thermal maturity between 3.5% and 4.3% (with a corresponding degree of graphitization of organic matter between 17% and 47.32%). Basement faults are present, leading to abnormally high thermal maturity, poor preservation conditions, continuous generation of micropores, better connectivity, and a reduced number of pores. Medium macropores with good connectivity suffer from gas loss in the fracture network, leading to the collapse and disappearance of pores. The results mentioned in the statement have an important guiding role in the efficient exploration of shale gas in the Longmaxi Formation in the southern Sichuan Basin.

Funder

PetroChina Southwest Oil and Gas Field and China University of Petroleum-Beijing cooperative project

China Petroleum Natural Gas Group Co., Ltd. science and technology project ‘the new layer of favorable area optimization and exploration evaluation of key technology research’

research project of PetroChina Southwest Oil and Gas Field Company ‘Research on controlling factors of shale gas content difference in different tectonic belts in Luzhou-Yuxi area’

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3