The Raw Material Challenge of Creating a Green Economy

Author:

Herrington Richard Jeremy1ORCID

Affiliation:

1. Centre for Resourcing the Green Economy, The Natural History Museum, London SW75BD, UK

Abstract

Clean technologies and infrastructure for our low-carbon, green future carry intense mineral demands. The ambition remains to recycle and reuse as much as we can; however, newly mined resources will be required in the near term despite the massive improvements in the reuse and recycling of existing end-of-use products and wastes. Growth trends suggest that mining will still play a role after 2050 since the demand for metals will increase as the developing world moves toward a per capita usage of materials comparable to that of the developed world. There are sufficient geological resources to deliver the required mineral commodities, but the need to mine must be balanced with the requirement to tackle environmental and social governance issues and to deliver sustainable development goals, ensuring that outcomes are beneficial for both the people and planet. Currently, the lead time to develop new mines following discovery is around 16 years, and this needs to be reduced. New approaches to designing and evaluating mining projects embracing social, biodiversity, and life cycle analysis aspects are pivotal. New frontiers for supply should include neglected mined wastes with recoverable components and unconventional new deposits. New processing technologies that involve less invasive, lower energy and cleaner methodologies need to be explored, and developing such methodologies will benefit from using nature-based solutions like bioprocessing for both mineral recovery and for developing sustainable landscapes post mining. Part of the new ambition would be to seek opportunities for more regulated mining areas in our own backyard, thinking particularly of old mineral districts of Europe, rather than relying on sources with potentially and less controllable, fragile, and problematic supply chains. The current debate about the potential of mining our deep ocean, as an alternative to terrestrial sources needs to be resolved and based on a broader analysis; we can then make balanced societal choices about the metal and mineral supply from the different sources that will be able to deliver the green economy while providing a net-positive deal for the planet and its people.

Funder

NERC

EU

GCBC Project Bio+Mine

Publisher

MDPI AG

Reference84 articles.

1. Mining our green future;Herrington;Nat. Rev. Mater.,2021

2. IEA (2023, May 31). The Role of Critical Minerals in Clean Energy Transitions. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions.

3. Ekins, P., Hughes, N., Brigenzu, S., Clarke, C.A., Fischer-Kowalski, M., Graedel, T., Hajer, M., Hashimoto, S., Hatield-Dodds, S., and Havlik, P. (2016). Resource Efficiency: Potential and Economic Implications, United Nations Environment Program.

4. UNDP (2023, November 06). Mapping Mining to the SDGs. Available online: https://www.undp.org/publications/mapping-mining-sdgs-atlas.

5. Sector-level estimates for global future copper demand and the potential for resource efficiency;Klose;Resour. Conserv. Recycl.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3