Organic Matter Enrichment Mechanisms in the Lower Cambrian Shale: A Case Study from Xiangandi #1 Well

Author:

Zhou Lei123,Feng Xingqiang123,Zhang Linyan123,Wu Lin123

Affiliation:

1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China

2. Key Laboratory of Petroleum Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China

3. Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Natural Resources, Chinese Academy of Geological Sciences, Beijing 100081, China

Abstract

In order to investigate the effect of primary productivity, organic matter dilution, and preservation on the accumulation of organic matter, geochemical data, and proxies of primary productivity, clastic influx, and redox conditions were obtained for organic-rich shales in the Cambrian Niutitang Formation. The primary productivity (total organic carbon [TOC], Mo, P, Ba, and Babio) and redox (Ni/Co, V/Cr, U/Al, and Th/U) proxies suggest the organic-rich shales were deposited in anoxic-euxinic conditions during periods of high primary productivity. Pyrite in the Niutitang Formation comprises spherical framboids, which also indicate that anoxic bottom waters were present during organic matter deposition. High primary productivity enhanced the organic C flux into the thermocline layer and bottom waters, which lead to the development of anoxic bottom waters owing to O2 consumption by microorganisms and organic matter degradation. The anoxic bottom waters were beneficial for the preservation of organic matter. In addition, Ti/Al ratios correlate well with TOC contents throughout the Niutitang Formation, indicating that clastic input increased the burial rate and prevented organic matter degradation during deposition. Therefore, the accumulation of organic matter in the Niutitang Formation was controlled mainly by primary productivity rather than bottom-water redox conditions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

China Geological Survey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3