Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake

Author:

Tandyrak RenataORCID,Grochowska Jolanta KatarzynaORCID,Augustyniak RenataORCID,Łopata MichałORCID

Abstract

Meromictic lakes are unique aquatic ecosystems that occur extremely rarely. The phenomenon of meromixis can result from both natural and anthropogenic factors. The aim of this study was to analyse thermal and chemical stratification in a small, deep (6 ha, H max = 24.5 m) lake. The evaluated lake had a typical summer thermal profile with a shallow epilimnion, a sharp thermocline, and a distinct monimolimnion layer in the hypolimnion, which was also maintained during circulation. The lake had a clinograde oxygen profile, with an oxygen deficit in the metalimnion and permanent anoxic conditions in the deeper layers, including during circulation. A redox zone was identified during summer stagnation. The monimolimnion formed a thermally isolated layer at a depth of around 15 m, and the chemocline was situated above the monimolimnion. In the chemocline, the EC gradient ranged from 61 to 77 μS·cm−1 per meter of depth in the summer and from 90 to 130 μS·cm−1 per meter of depth during circulation. EC was significantly correlated with Ca2+ concentration (r2 = 0.549). Chemical stratification, particularly with regard to organic matter distribution, was observed in the chemocline. The monimolimnion severely limited nutrient internal loading.

Funder

Minister Of Science and Higher Educationin

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference63 articles.

1. An Outline of Poland’s Physical Limnology;Choiński,1995

2. Stratification of lakes

3. Physical Features of Meromictic Lakes: Stratification and Circulation;Boehrer,2017

4. Ecology of Meromictic Lakes,2017

5. Treatise on Limnology: Geography, Physics and Chemistry;Hutchinson,1957

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3