A High-Temperature Risk Assessment Model for Maize Based on MODIS LST

Author:

Hu Xinlei,Zhao ZuliangORCID,Zhang Lin,Liu ZheORCID,Li Shaoming,Zhang XiaodongORCID

Abstract

Currently, high-temperature risk assessments of crops at the regional scale are usually conducted by comparing the observed air temperature at ground stations or via the remote sensing inversion of canopy temperature (such as MODIS (moderate-resolution imaging spectroradiometer) land surface temperature (LST)) with the threshold temperature of the crop. Since this threshold is based on the absolute temperature value, it is difficult to account for changes in environmental conditions and crop canopy information between different regions and different years in the evaluation model. In this study, MODIS LST products were used to establish an evaluation model (spatiotemporal deviation mean (STDM)) and a classification method to determine maize-growing areas at risk of high temperatures at the regional scale. The study area was the Huang-Huai-Hai River plain of China where maize is grown and high temperatures occur frequently. The spatiotemporal distribution of the high-temperature risk of summer maize was determined in the study area from 2003 to 2018. The results demonstrate the applicability of the model at the regional scale. The distribution of high-temperature risk in the Huang-Huai-Hai region was consistent with the actual temperature measurements. The temperatures in the northwestern, southwestern, and southern parts were relatively high and the area was classified as a stable zone. Shijiazhuang, Jiaozuo, Weinan, Xi’an, and Xianyang city were located in a zone of increasing high temperatures. The regions with a stable high-temperature risk were Xiangfan, Yuncheng, and Luoyang city. Areas of decreasing high temperatures were Handan, Xingtai, Bozhou, Fuyang, Nanyang, Linfen, and Pingdingshan city. Areas that need to focus on preventing high-temperature risks include Luoyang, Yuncheng, Xianyang, Weinan, and Xi’an city. This study provides a new method for the detailed evaluation of regional high-temperature risk and data support.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference48 articles.

1. Influence of High Temperature on Growth and Development of Maize;Chen;Crops,2008

2. Effects of Climate Warming on Growth Process and Yield of Summer Maize in Huang-Huai-Hai Plain in Last 20 Years;Lu;Sci. Agric. Sin.,2015

3. Effects of Climate Change on Cropping Pattern and Yield of Summer Maize-Winter Wheat in Huang-Huai-Hai Plain;Sun;Sci. Agric. Sin.,2017

4. Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3