The Impacts of Human Activities on Ecosystems within China’s Nature Reserves

Author:

Zhu PingORCID,Cao Wei,Huang Lin,Xiao Tong,Zhai Jun

Abstract

Protected areas (PAs) provide refuges for threatened species and are considered to be the most important approach to biodiversity conservation. Besides climate change, increasing human population is the biggest threat to biodiversity and habitats in PAs. In this paper, the temporal and spatial variations of land cover changes (LCC), vegetation fraction (VFC), and net primary productivity (NPP) were studied to present the ecosystem dynamics of habitats in 6 different types of national nature reserves (NNRs) in 8 climate zones in China. Furthermore, we used Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light datasets and the human disturbance (HD) index estimated from LCC to quantify the living and developing human pressures within the NNRs in the period 2000–2013. The results showed that (1) the living human activities of NNRs increased apparently in the humid warm-temperate zone, Qinghai-Tibet Plateau, mid-temperate semi-arid zone, and mid-temperate humid zone, with the highest increase of nighttime light observed in inland wetlands; (2) the developing human activities in NNRs indicated by the HD index were higher in the humid warm-temperate zone and mid-temperate semi-arid zone as a result of increasing areas of agricultural and built activities, and lower in the sub-tropics due to improved conservation of forest ecosystems; (3) the relationship between HD and VFC suggests that ecosystems in most NNRs of south-subtropics, mid-temperate arid zone and Qinghai-Tibet Plateau were predominantly impacted by climate change. However, HDs were the prevalent factor of ecosystem dynamics in most NNRs of north-subtropics, mid-temperate semi-arid and humid zones.

Funder

The National Key Research and Development Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3