Extracting Knowledge from Big Data for Sustainability: A Comparison of Machine Learning Techniques

Author:

Garg Raghu,Aggarwal Himanshu,Centobelli Piera,Cerchione Roberto

Abstract

At present, due to the unavailability of natural resources, society should take the maximum advantage of data, information, and knowledge to achieve sustainability goals. In today’s world condition, the existence of humans is not possible without the essential proliferation of plants. In the photosynthesis procedure, plants use solar energy to convert into chemical energy. This process is responsible for all life on earth, and the main controlling factor for proper plant growth is soil since it holds water, air, and all essential nutrients of plant nourishment. Though, due to overexposure, soil gets despoiled, so fertilizer is an essential component to hold the soil quality. In that regard, soil analysis is a suitable method to determine soil quality. Soil analysis examines the soil in laboratories and generates reports of unorganized and insignificant data. In this study, different big data analysis machine learning methods are used to extracting knowledge from data to find out fertilizer recommendation classes on behalf of present soil nutrition composition. For this experiment, soil analysis reports are collected from the Tata soil and water testing center. In this paper, Mahoot library is used for analysis of stochastic gradient descent (SGD), artificial neural network (ANN) performance on Hadoop environment. For better performance evaluation, we also used single machine experiments for random forest (RF), K-nearest neighbors K-NN, regression tree (RT), support vector machine (SVM) using polynomial function, SVM using radial basis function (RBF) methods. Detailed experimental analysis was carried out using overall accuracy, AUC–ROC (receiver operating characteristics (ROC), and area under the ROC curve (AUC)) curve, mean absolute prediction error (MAE), root mean square error (RMSE), and coefficient of determination (R2) validation measurements on soil reports dataset. The results provide a comparison of solution classes and conclude that the SGD outperforms other approaches. Finally, the proposed results support to select the solution or recommend a class which suggests suitable fertilizer to crops for maximum production.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference45 articles.

1. THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS

2. Environmental Control of Plant Growth;Evans,1963

3. Benefiting from Big Data: A New Approach for the Telecom Industry;Acker,2013

4. Big Data for Health

5. Big Data and Their Social Impact: Preliminary Study

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3