Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data

Author:

Wang Zhifu,Luo WeiORCID,Xu Song,Yan Yuan,Huang Limin,Wang Jingkai,Hao Wenmei,Yang Zhongyi

Abstract

Power batteries are the core of electric vehicles, but minor faults can easily cause accidents; therefore, fault diagnosis of the batteries is very important. In order to improve the practicality of battery fault diagnosis methods, a fault diagnosis method for lithium-ion batteries in electric vehicles based on multi-method fusion of big data is proposed. Firstly, the anomalies are removed and early fault analysis is performed by t-distribution random neighborhood embedding (t-Sne) and wavelet transform denoising. Then, different features of the vehicle that have a large influence on the battery fault are identified by factor analysis, and the faulty features are extracted by a two-way long and short-term memory network method with convolutional neural network. Finally a self-learning Bayesian network is used to diagnose the battery fault. The results show that the method can improve the accuracy of fault diagnosis by about 12% when verified with data from different vehicles, and after comparing with other methods, the method not only has higher fault diagnosis accuracy, but also reduces the response time of fault diagnosis, and shows superiority compared to graded faults, which is more in line with the practical application of engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference20 articles.

1. KM3NeT underwater autonomous power supply system;Leonora;J. Instrum.,2021

2. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data;Jiang;Energy,2021

3. Voltage abnormality-based fault diagnosis for batteries in electric buses with a self-adapting update model;He;J. Energy Storage,2022

4. Challenges and development trend of electric vehicle power battery fault diagnosis technology under big data;Wang;J. Mech. Eng.,2021

5. A Novel Method for Lithium-Ion Battery Fault Diagnosis of Electric Vehicle Based on Real-Time Voltage;Li;Wirel. Commun. Mob. Comput.,2022

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3