A Cu/Polypyrrole-Coated Stainless Steel Mesh Membrane Cathode for Highly Efficient Electrocoagulation-Coupling Anti-Fouling Membrane Filtration

Author:

Li Yuna,Hao Zixin,Han Jinglong,Sun Yueyang,He Mengyao,Yao Yuang,Yang Fuhao,Liu Meijun,Zhang Haifeng

Abstract

Membrane filtration fouling has become a significant issue that restricts its wide application. The electrocoagulation (EC) technique combines a variety of synergistic pollutant removal technologies (including flocculation, redox, and air flotation), which can be an ideal pretreatment process for membrane filtration. In this work, a novel Cu2+-doped and polypyrrole-coated stainless steel mesh membrane (Cu/PPy–SSM) was prepared by direct current electrodeposition, and it was introduced in an electrocoagulation-membrane reactor (ECMR) to construct an EC–membrane filtration coupling system. The Cu/PPy–SSM was applied as the cathode, while an aluminum plate was used as the anode in the ECMR. The ECMR enabled an excellent humic acid (HA) removal performance and could effectively mitigate the fouling of the Cu/PPy–SSM. Its performance can be attributed to the following: (1) the Cu/PPy–SSM can repel the negatively charged pollutants under the applied electric field; (2) the cathodic hydrogen gas produced on the Cu/PPy–SSM restrains the compacting of the cake layer and delays degradation of membrane flux; and (3) the resultant porous loose structure can perform as a dynamic membrane, which can effectively promote the separation performance of the Cu/PPy–SSM. The resultant ECMR enabled an improved HA removal rate of 92.77%, and the membrane-specific flux could be stabilized at more than 86%. Response surface methodology (RSM) was used to optimize the operation parameters of the ECMR, and the predicted HA removal rate reached 93.01%. Both the experimental results and modelled predictions show that using the Cu/PPy–SSM as a cathode can lead to excellent performance of the ECMR.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3