Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization

Author:

Chillab Riyadh Kamil,Jaber Aqeel S.ORCID,Smida Mouna Ben,Sakly Anis

Abstract

Distributed generation (DG) refers to small generating plants that usually develop green energy and are located close to the load buses. Thus, reducing active as well as reactive power losses, enhancing stability and reliability, and many other benefits arise in the case of a suitable selection in terms of the location and the size of the DGs, especially in smart cities. In this work, a new nature-inspired algorithm called Garra Rufa optimization is selected to determine the optimal DG allocation. The new metaheuristic algorithm stimulates the massage fish activity during finding food using MATLAB software. In addition, three indexes which are apparently powered loss compounds and voltage profile, are considered to estimate the effectiveness of the proposed method. To validate the proposed algorithm, the IEEE 30 and 14 bus standard test systems were employed. Moreover, five cases of DGs number are tested for both standards to provide a set of complex cases. The results significantly show the high performance of the proposed method especially in highly complex cases compared to particle swarm optimization (PSO) algorithm and genetic algorithm (GA). The DG allocation, using the proposed method, reduces the active power losses of the IEEE-14 bus system up to 236.7873%, by assuming 5DGs compared to the active power losses without DG. Furthermore, the GRO increases the maximum voltage stability index of the IEEE-30 bus system by 857% in case of the 4DGs, whereas GA rises the reactive power of 5DGs to benefit the IEEE-14 bus system by 195.1%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Integration of Active and Reactive Power DGs in Distribution Network via a Novel Multi-Objective Intelligent Technique;2024 IEEE 4th International Conference in Power Engineering Applications (ICPEA);2024-03-04

2. Comparative study for various types of DG allocation for 24 hours load and generation profile;2023 IEEE Energy Conversion Congress and Exposition (ECCE);2023-10-29

3. Power Systems Optimization Challenges and Applications: An Overview;2023 International Conference on the Cognitive Computing and Complex Data (ICCD);2023-10-21

4. Predictive Maintenance of Produced Water Re-injection Pump Failure in the Field of Oil and Gas: A Review;2023 International Conference on the Cognitive Computing and Complex Data (ICCD);2023-10-21

5. Distribution network forecasting and expansion planning with optimal location and sizing of solar photovoltaic-based distributed generation;Computers and Electrical Engineering;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3