Simulation and Evaluation of Heat Transfer Inside a Diseased Citrus Tree during Heat Treatment

Author:

Ghatrehsamani ShirinORCID,Ampatzidis YiannisORCID,Schueller John K.,Ehsani Reza

Abstract

Heat treatment has been applied in previous studies to treat diseased plants and trees affected by heat-sensitive pathogens. Huanglongbing (HLB) is a heat-sensitive pathogen and the optimal temperature–time for treating HLB-affected citrus trees was estimated to be 54 °C for 60 to 120 s from indoor experimental studies. However, utilizing this method in orchards is difficult due to technical difficulties to effectively apply heat. Recently, a mobile thermotherapy system (MTS) was developed to in-field treat HLB-affected trees. This mobile device includes a canopy cover that covers the diseased tree and a system to supply steam under the cover to treat the tree. It was proven that the temperature inside the canopy cover can reach the desired one (i.e., 54 °C) to kill bacteria. However, for HLB, the heat should penetrate the tree’s phloem where the bacteria live. Therefore, measuring the heat penetration inside the tree is very critical to evaluate the performance of the MTS. In this study, a heat transfer model was developed to simulate the heat penetration inside the tree and predict the temperature in the phloem of the diseased tree during the in-field heat treatment. The simulation results were compared with in-field experimental measurements. The heat transfer model was developed by a comparative analysis of the experimental data using the ANSYS software. Results showed that the temperature in the phloem was 10–40% lower than the temperature near the surface of the bark. Simulation results were consistent with experimental results, with an average relative error of less than 5%.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3