Author:
Itakura ,Saito ,Suzuki ,Kondo ,Hosoi
Abstract
Tofu is an ancient soybean product that is produced by heating soymilk containing a coagulation agent. Owing to its benefits to human health, it has become popular all over the world. An important index that determines the final product’s (tofu’s) quality is firmness. Coagulants such as CaSO4 and MgCl2 affect the firmness. With the increasing demand for tofu, a monitoring methodology that ensures high-quality tofu is needed. In our previous paper, an opportunity to monitor changes in the physical properties of soymilk by studying its optical properties during the coagulation process was implied. To ensure this possibility, whether soymilk and tofu can be discriminated via their optical properties should be examined. In this study, a He–Ne laser (Thorlabs Japan Inc., Tokyo, Japan, 2015) with a wavelength of 633 nm was emitted to soymilk and tofu. The images of the scattered light on their surfaces were discriminated using a type of deep learning technique. As a result, the images were classified with an accuracy of about 99%. We adjusted the network architecture and hyperparameters for the learning, and this contributed to the successful classification. The construction of a network that is specific to our task led to the successful classification result. In addition to this monitoring method of the tofu coagulation process, the classification methodology in this study is worth noting for possible use in many relevant agricultural fields.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献