Multi-Bale Handling Unit for Efficient Logistics

Author:

Grisso Robert “Bobby”ORCID,Cundiff John,Comer Kevin

Abstract

This paper presents a design for a feedstock logistics system to supply a bioenergy plant located in the Southeast USA, specifically Piedmont, a physiographic region covering part of five states (VA, NC, SC, GA, and AL). The design uses a perennial grass (switchgrass) as the feedstock. Harvest is done with a round baler, and round bales are stored in single-layer ambient storage in satellite storage locations. New technology, 20-bale racks, was designed as the multi-bale handling unit. The analysis shows how proper design of the interactions between the several unit operations in a “logistics chain” can be used to minimize average delivered cost for the feedstock required for 24/7 operation. Racks are loaded at the satellite storage and delivered by hauling contractors hired by the plant and controlled by a “Feedstock Manager” at the plant to insure approximately the same number of loads are received each day. Single-bale handling at the plant is eliminated, thus the truck unload time is reduced and truck productivity (tons/day) is increased. At-plant handling and storage in 20-bale racks increases plant receiving facility productivity, and gives a reduction in plant cost to supply a continuous steam of material for 24/7 operation.

Publisher

MDPI AG

Reference43 articles.

1. Analysis of five simulated straw harvest scenarios;Sokhansanj;Can. Biosys. Eng.,2008

2. Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL);Sokhansanj,2008

3. Farmer willingness to grow switchgrass for energy production

4. Chariton Valley Biomass Project—Draft Fuel Supply Plan;Chariton Valley,2002

5. Biomass Yield and Biofuel Quality of Switchgrass Harvested in Fall or Spring

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3