Rapid Analysis of Soil Organic Carbon in Agricultural Lands: Potential of Integrated Image Processing and Infrared Spectroscopy

Author:

Senevirathne Nelundeniyage Sumuduni L.1,Ahamed Tofael2

Affiliation:

1. Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan

2. Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan

Abstract

The significance of soil in the agricultural industry is profound, with healthy soil representing an important role in ensuring food security. In addition, soil is the largest terrestrial carbon sink on earth. The soil carbon pool is composed of both inorganic and organic forms. The equilibrium of the soil carbon pool directly impacts the carbon cycle via all of the other processes on the planet. With the development of agricultural systems from traditional to conventional ones, and with the current era of precision agriculture, which involves making decisions based on information, the importance of understanding soil is becoming increasingly clear. The control of microenvironment conditions and soil fertility represents a key factor in achieving higher productivity in these systems. Furthermore, agriculture represents a significant contributor to carbon emissions, a topic that has become timely given the necessity for carbon neutrality. In addition to these concerns, updating soil-related data, including information on macro and micronutrient conditions, is important. Carbon represents one of the major nutrients for crops and plays a key role in the retention and release of other nutrients and the management of soil physical properties. Despite the importance of carbon, existing analytical methods are complex and expensive. This discourages frequent analyses, which results in a lack of soil carbon-related data for agricultural fields. From this perspective, in situ soil organic carbon (SOC) analysis can provide timely management information for calibrating fertilizer applications based on the soil–carbon relationship to increase soil productivity. In addition, the available data need frequent updates due to rapid changes in ecosystem services and the use of extensive fertilizers and pesticides. Despite the importance of this topic, few studies have investigated the potential of image analysis based on image processing and spectral data recording. The use of spectroscopy and visual color matching to develop SOC predictions has been considered, and the use of spectroscopic instruments has led to increased precision. Our extensive literature review shows that color models, especially Munsell color charts, are better for qualitative purposes and that Cartesian-type color models are appropriate for quantification. Even for the color model, spectroscopy data could be used, and these data have the potential to improve the precision of measurements. On the other hand, mid-infrared radiation (MIR) and near-infrared radiation (NIR) diffuse reflection has been reported to have a greater ability to predict SOC. Finally, this article reports the availability of inexpensive portable instruments that can enable the development of in situ SOC analysis from reflection and emission information with the integration of images and spectroscopy. This integration refers to machine learning algorithms with a reflection-oriented spectrophotometer and emission-based thermal images which have the potential to predict SOC without the need for expensive instruments and are easy to use in farm applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3