Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel

Author:

Biocca Marcello1ORCID,Pochi Daniele1,Imperi Giancarlo1,Gallo Pietro1

Affiliation:

1. Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—CREA, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo, Italy

Abstract

Urban vegetation plays a crucial role in reducing atmospheric particulate matter (PM), modifying microclimates, and improving air quality. This study investigates the impact of a laurel hedge (Laurus nobilis L.) on airborne PM, specifically total suspended particulate (TSP) and respirable particles (PM4) generated by a Diesel tractor engine. Conducted in a wind tunnel of approximately 20 m, the research provides insights into dust deposition under near-real-world conditions, marking, to our knowledge, the first exploration in a wind tunnel of this scale. Potted laurel plants, standing around 2.5 m tall, were arranged to create barriers of three different densities, and air dust concentrations were detected at 1, 4, 9, and 14 m from the plants. The study aimed both to develop an experimental system and to assess the laurel hedge’s ability to reduce atmospheric PM. Results show an overall reduction in air PM concentrations (up to 39%) due to the presence of the hedge. The highest value of dust reduction on respirable particles was caused by the thickest hedge (three rows of plants). However, the data exhibit varying correlations with hedge density. This study provides empirical findings regarding the interaction between dust and vegetation, offering insights for designing effective hedge combinations in terms of size and porosity to mitigate airborne particulate matter.

Funder

Lazio Innova

Publisher

MDPI AG

Reference35 articles.

1. UN-Habitat (2020). World Cities Report 2020: The Value of Sustainable Urbanization, UN-Habitat.

2. Worldometer (2023, December 10). 2020, Italy Population. Available online: https://www.worldometers.info/world-population/italy-population/.

3. On the reduction of urban particle concentration by vegetation—A review;Litschke;Meteorol. Z.,2008

4. A short history of the toxicology of inhaled particles;Donaldson;Part. Fibre Toxicol.,2012

5. Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects;Li;Clin. Immunol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3