Enhanced Deep Learning Architecture for Rapid and Accurate Tomato Plant Disease Diagnosis

Author:

Islam Shahab Ul1ORCID,Zaib Shahab2,Ferraioli Giampaolo1,Pascazio Vito1ORCID,Schirinzi Gilda1ORCID,Husnain Ghassan3ORCID

Affiliation:

1. Department of Engineering, University of Naples Parthenope, 80133 Naples, Italy

2. Department of Computer Science, IQRA National University, Peshawar 25000, Pakistan

3. Department of Computer Science, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan

Abstract

Deep neural networks have demonstrated outstanding performances in agriculture production. Agriculture production is one of the most important sectors because it has a direct impact on the economy and social life of any society. Plant disease identification is a big challenge for agriculture production, for which we need a fast and accurate technique to identify plant disease. With the recent advancement in deep learning, we can develop a robust and accurate system. This research investigated the use of deep learning for accurate and fast tomato plant disease identification. In this research, we have used individual and merged datasets of tomato plants with 10 diseases (including healthy plants). The main aim of this work is to check the accuracy of the existing convolutional neural network models such as Visual Geometry Group, Residual Net, and DenseNet on tomato plant disease detection and then design a custom deep neural network model to give the best accuracy in case of the tomato plant. We have trained and tested our models with datasets containing over 18,000 and 25,000 images with 10 classes. We achieved over 99% accuracy with our custom model. This high accuracy was achieved with less training time and lower computational cost compared to other CNNs. This research demonstrates the potential of deep learning for efficient and accurate tomato plant disease detection, which can benefit farmers and contribute to improved agricultural production. The custom model’s efficient performance makes it promising for practical implementation in real-world agricultural settings.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3