Comparative Performance of a Sprayer Rate Controller and Pulse Width Modulation (PWM) Systems for Site-Specific Pesticide Applications

Author:

Meena Ravi1ORCID,Virk Simerjeet2ORCID,Rains Glen3ORCID,Porter Wesley4

Affiliation:

1. College of Engineering, University of Georgia, Athens, GA 30602, USA

2. Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA

3. Department of Entomology, University of Georgia, Tifton, GA 31793, USA

4. Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA

Abstract

With recent advances in spray technology and rising interest in site-specific applications, it is imperative to assess the performance of the latest application technologies to ensure effective pesticide applications. Thus, a study was conducted to compare and evaluate the performance of two different flow control systems [rate controller (RC) and pulse width modulation (PWM)] on an agricultural sprayer while simulating different site-specific application scenarios. A custom data acquisition and logging system was developed to record the real-time nozzle flow and pressure across the sprayer boom. The first experiment measured the response time to achieve different target application rates in single-rate site-specific (On/Off) states at varying simulated ground speeds. The second experiment examined the response time for rate transitions in variable-rate application scenarios among different selected target rates at varying simulated ground speeds. Across all the application scenarios, the PWM system consistently outperformed the RC system in terms of response time and rate stabilization. Specifically, the PWM system exhibited significantly lower mean rate stabilization times compared to the RC system during single-rate application states. Similarly, in the variable-rate application states—where the rate transitions were evaluated—the PWM system consistently displayed shorter mean rate transition and stabilization times compared to the RC system. Overall, the findings from this study suggest PWM systems tend to be more responsive and effective, making them the preferred choice for efficient precision site-specific pesticide applications. Future research should evaluate the influence of other operational parameters such as look-ahead time and ground speed variations on the performance of both systems in actual field applications.

Funder

Georgia Peanut Commission

National Peanut Board

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3