Light Stress Detection in Ficus elastica with Hyperspectral Indices

Author:

Dmitriev Pavel A.1ORCID,Kozlovsky Boris L.1ORCID,Dmitrieva Anastasiya A.1ORCID,Varduni Tatyana V.1ORCID,Lysenko Vladimir S.1

Affiliation:

1. Botanical Garden, Academy of Biology and Biotechnologies, Southern Federal University, Rostov-on-Don 344006, Russia

Abstract

The development of methods to detect plant stress is not only a scientific challenge, but is also of great importance for agriculture and forestry. However, at present, stress diagnostics based on plant spectral characteristics has several limitations: (1) the high dependence of stress assessment on plant species identity; (2) the poor differentiation of different types of stress; and (3) the difficulty of detecting stress before visible symptoms appear. In this regard, the development of plant spectral metrics represents a significant area of research. Ficus elastica plants were exposed under the photosynthetic photon flux density (PPFD) from 0 to 1200 μmol photons m−2s−1. Exposure of F. elastica leaves to excess light (EL) (≥400 μmol photons m−2s−1) resulted in an increase in reflectance in the yellow-green region (522–594 nm) and a decrease in reflectance in the red region (666–682 nm) of the spectrum, accompanied by a shift of the red edge point toward the longer wavelength. These changes were revealed using the previously proposed light stress index (LSI = mean(R666:682)/mean(R522:594)). Based on the results obtained, two new vegetation indices (VIs) were proposed: LSIRed = R674/R654 and LSINorm = (R674 − R654)/(R674 + R654), indicating light stress by changes in the red region of the spectrum. The results of the study showed that LSI, LSIRed, and LSINorm have a high degree of coupling strength with maximal quantum yields of photosystem II values. The plant response to EL exposure, as assessed by the values of these three VIs, was well expressed regardless of the PPFD levels. The effect of EL at non-stressful PPFDs (50–200 μmol photons m−2s−1) was found to disappear within one hour after cessation of exposure. In contrast, the effect of the stressful PPFD (800 μmol photons m−2s−1) was found to persist for at least 80 h after cessation of exposure. The results of the study indicate the need to consider light history in spectral monitoring of vegetation.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3