Modern Floating Greenhouses: Planting Gray Oyster Mushrooms with Advanced Management Technology Including Mobile Phone Algorithms and Arduino Remote Control

Author:

Samseemoung Grianggai1ORCID,Ampha Phongsuk2,Witthayawiroj Niti3,Sayasoonthorn Supakit4ORCID,Juey Theerapat1

Affiliation:

1. Department of Agricultural Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Thanyabur 12110, Thailand

2. Department of Electronics and Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Thanyabur 12110, Thailand

3. Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyabur 12110, Thailand

4. Department of Farm Mechanics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand

Abstract

A floating greenhouse for growing oyster mushrooms can be operated remotely via a mobile phone. This innovative system can enhance mushroom production and quality while saving time. By using the Android OS operating system on a mobile phone (Internet Mobile Device with Android OS, MGT Model: T10), users can adjust the humidity and temperature within the greenhouse. This approach is particularly beneficial for older adults. Create a smart floating greenhouse that can be controlled remotely to cultivate oyster mushrooms. It would help to enhance the quality of the mushrooms, reduce the time required for cultivation, and increase the yield per planting area. We carefully examined the specifications and proceeded to create a greenhouse that could float. In addition, we have developed a unit that could control temperature and humidity, a solar cell unit, and a rack for growing mushrooms. Our greenhouses were operated remotely. To determine the best conditions for growing plants in a floating greenhouse, we conducted a test to measure temperature and humidity. We then compared our findings to those of a traditional greenhouse test and determined the optimal parameters for floating greenhouse growth. These parameters include growth time, temperature, humidity, and weight. A mushroom nursery that can be controlled remotely and floats on water consists of four main components: a structure to regulate temperature and humidity, solar cells, and mushroom racks. Research shows that mushrooms grown under this automated control system grow better than those grown through traditional methods. The harvest period is shorter, and the yield is higher than the typical yield of 1.81–1.22. When considering the construction and use of remote-controlled floating mushroom nurseries, the daily weight of mushrooms accounted for 20.22%. The company’s investment return rates were found to be 3.47 years, or 580.21 h per year, which is higher than the yield of traditional methods. This mobile phone remote control system, created by Arduino, is tailor-made for cutting-edge floating greenhouses that grow grey oyster mushrooms. It can be operated with ease via mobile devices and is especially user-friendly for elderly individuals. This system enables farmers to produce a high volume of quality breeds. Furthermore, those with fish ponds can utilize the system to increase their profits.

Publisher

MDPI AG

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3