Evaluation of a System to Assess Herbicide Movement in Straw under Dry and Wet Conditions

Author:

Thais dos Santos Izabela1,Ferraz Santos de Brito Ivana Paula1,Alves de Matos Ana Karollyna1,Pinheiro de Miranda Valesca1,Meirelles Guilherme Constantino1,Oliveira de Abreu Priscila1,Alcántara-de la Cruz Ricardo12ORCID,Velini Edivaldo D.1,Carbonari Caio A.1ORCID

Affiliation:

1. Department of Crop Protection, College of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil

2. Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil

Abstract

Straw from no-till cropping systems, in addition to increasing the soil organic matter content, may also impede the movement of applied herbicides into the soil and, thus, alter the behavior and fate of these compounds in the environment. Rain or irrigation before or after an herbicide treatment can either help or hinder its movement through the straw, influencing weed control. Our objective was to develop a system for herbicide application and rain simulation, enabling the evaluation of the movement of various herbicides either in dry or wet straw under different rainfall volumes (25, 50, 75, and 100 mm). The amount of the applied herbicides that moved through the straw were collected and measured using a liquid chromatograph with a tandem mass spectrometry system (LC-MS/MS). Measurements obtained with the developed system showed a high herbicide treatment uniformity across all replications. The movement of the active ingredients through the straw showed variability that was a function of the applied herbicide, ranging from 17% to 99%. In wet straw, the collected herbicide remained constant from 50 to 100 mm of simulated rainfall. For the wet straw, the decreasing percentages of the herbicide movement through straw to the soil were sulfentrazone (99%), atrazine and diuron (91% each), hexazinone (84%), fomesafen (80.4%), indaziflam (79%), glyphosate (63%), haloxyfop-p-methyl (45%), and S-metolachlor (27%). On the dry straw, the decreasing percentages of the herbicide movement were fomesafen (88%), sulfentrazone (74%), atrazine (69.4%), hexazinone (69%), diuron (68.4%), glyphosate (48%), indaziflam (34.4%), S-metolachlor (22%), and haloxyfop-p-methyl (18%). Overall, herbicide movement was higher in wet straw (with a previous 25 mm simulated rainfall layer) than in dry straw. Some herbicides, like haloxyfop-p-methyl and indaziflam, exhibited over 50% higher movement in wet straw than dry straw after 100 mm of simulated rain. The developed system can be adapted for various uses, serving as a valuable tool to evaluate the behavior of hazardous substances in different agricultural and environmental scenarios.

Funder

CAPES

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3