Effect of Defoliation on Growth, Yield and Forage Quality in Maize, as a Simulation of the Impact of Fall Armyworm (Spodoptera frugiperda)

Author:

Tashiro Kouki1,Ishitani Midori2,Murai Saaya2,Niimi Mitsuhiro2,Tobisa Manabu2,Idota Sachiko2,Adachi-Hagimori Tetsuya2ORCID,Ishii Yasuyuki2

Affiliation:

1. Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan

2. Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan

Abstract

This study assesses the impact of defoliation applied to three developmental stages across three cropping seasons from 2021 to 2023 on growth, yield and forage quality in maize. The experimental design included three treatments: defoliation of three expanded leaves at the 3rd–4th leaf stage (DF1), the 5th–6th expanded leaves by leaf punch (DF2) and expanding leaves with the DF2 treatment (DF3) at the 6th–7th leaf stages, compared with no defoliation (control). Over three years, the most significant decrease in dry matter (DM) yield occurred in DF1 during spring sowing, while in summer sowing, the largest reduction was in DF3, both of which were correlated with changes in the number of grains per ear. The DM yields at harvest were positively correlated with plant leaf areas at the silking stage. The digestibility of forage in in vitro DM decreased concomitantly with an increase in acid detergent fiber content, indicating a decrease in forage quality. Given the frequent severe damage observed in summer sown maize and the detrimental effects of early growth stage leaf feeding on quality and quantity of spring sown maize, the application of registered insecticides is advised to reduce pest damage to maize crops.

Funder

The Japan Racing Association

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3