Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan

Author:

Akhmetov Adilbek1,Akhmedov Sherzodbek1ORCID,Ishchanov Javlonbek2

Affiliation:

1. Department of Tractors and Automobiles, “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University, Tashkent 100000, Uzbekistan

2. Department of Irrigation and Melioration, “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University, Tashkent 100000, Uzbekistan

Abstract

In agriculture, machines engaged in various agrotechnical activities and operations have different impacts on the soil. The effect of mechanization is primarily reflected in two indicators: soil density and hardness. At the same time, considering the direct dependence of tractive resistance on soil hardness in processing machines and sprayers, we studied subsequent changes in the soil in the path of wheels affected by the soil after the passage of four-wheeled and three-wheeled tractors. We also examined various atmospheric pressures in the tractor’s tires and the impact of different types of tires on soil compaction and traction. The studies showed that to reduce the compression impact on the soil of four-wheeled tractor working systems during certain technical operations, it is necessary to choose the maximum permissible travel speed and the minimum air pressure in the tires specified in the technical conditions. This approach helps to decrease soil compaction and maintain its structure. Additionally, it was found that three-wheeled tractors exert less pressure on the soil compared to four-wheeled ones, which should also be considered when selecting equipment for different agrotechnical tasks. Optimizing tire pressure and tractor speed is crucial for minimizing negative soil impact and enhancing the efficiency of agricultural operations.

Funder

Ministry of Higher Education, Science and Innovations of the Republic of Uzbekistan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3