Robotic Multi-Boll Cotton Harvester System Integration and Performance Evaluation

Author:

Thapa Shekhar12ORCID,Rains Glen C.2ORCID,Porter Wesley M.3,Lu Guoyu1,Wang Xianqiao1ORCID,Mwitta Canicius12ORCID,Virk Simerjeet S.3ORCID

Affiliation:

1. College of Engineering, University of Georgia, Athens, GA 30602, USA

2. Department of Entomology, University of Georgia, Tifton, GA 31793, USA

3. Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA

Abstract

Several studies on robotic cotton harvesters have designed their end-effectors and harvesting algorithms based on the approach of harvesting a single cotton boll at a time. These robotic cotton harvesting systems often have slow harvesting times per boll due to limited computational speed and the extended time taken by actuators to approach and retract for picking individual cotton bolls. This study modified the design of the previous version of the end-effector with the aim of improving the picking ratio and picking time per boll. This study designed and fabricated a pullback reel to pull the cotton plants backward while the rover harvested and moved down the row. Additionally, a YOLOv4 cotton detection model and hierarchical agglomerative clustering algorithm were implemented to detect cotton bolls and cluster them. A harvesting algorithm was then developed to harvest the cotton bolls in clusters. The modified end-effector, pullback reel, vacuum conveying system, cotton detection model, clustering algorithm, and straight-line path planning algorithm were integrated into a small red rover, and both lab and field tests were conducted. In lab tests, the robot achieved a picking ratio of 57.1% with an average picking time of 2.5 s per boll. In field tests, picking ratio was 56.0%, and it took an average of 3.0 s per boll. Although there was no improvement in the lab setting over the previous design, the robot’s field performance was significantly better, with a 16% higher picking ratio and a 46% reduction in picking time per boll compared to the previous end-effector version tested in 2022.

Funder

Cotton Incorporated

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3