Physical Properties of Moist, Fermented Corn Grain after Processing by Grinding or Milling

Author:

Blazer Keagan J.1,Shinners Kevin J.1ORCID,Kluge Zachary A.1,Tekeste Mehari Z.2ORCID,Digman Matthew F.1ORCID

Affiliation:

1. Department of Biological Systems Engineering, University of Wisconsin, Madison, WI 53706, USA

2. Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA

Abstract

A novel biomass production system, integrating the co-harvesting and co-storage of moist corn grain and stover, promises a reduction in delivered feedstock costs. In this innovative method, the dry grain traditionally utilized for feed or biofuel production will now be processed at a considerably greater moisture content. The adoption of this approach may necessitate a substantial redesign of existing material handling infrastructure to effectively accommodate the handling and storage of moist grain after processing by milling or grinding. A comprehensive study was conducted to quantify the physical properties of this grain after processing with a knife processor or a hammermill. The geometric mean particle size, bulk and tapped density, sliding angle, material coefficient of friction, and discharged angle of repose were quantified. Five grain treatments, either fermented or unfermented, and having different moisture contents, were used. After processing, the moist, fermented ground grain exhibited a significantly smaller particle size compared to the dry grain. Additionally, both moist processed grains resulted in a decreased bulk density and increased material sliding angle, friction coefficient, and angle of repose. The examined metrics collectively suggest that handling, mixing, and storing moist ground grain will pose significant challenges compared to conventional dry ground grain. This increased difficulty may lead to substantially higher costs, a crucial factor that must be carefully considered when evaluating the overall economics of implementing this new biomass production system using combined harvesting and storage of corn grain and stover.

Funder

U.S. Department of Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3