ChickenSense: A Low-Cost Deep Learning-Based Solution for Poultry Feed Consumption Monitoring Using Sound Technology

Author:

Amirivojdan Ahmad1ORCID,Nasiri Amin1ORCID,Zhou Shengyu2,Zhao Yang2ORCID,Gan Hao1ORCID

Affiliation:

1. Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA

2. Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA

Abstract

This research proposes a low-cost system consisting of a hardware setup and a deep learning-based model to estimate broiler chickens’ feed intake, utilizing audio signals captured by piezoelectric sensors. The signals were recorded 24/7 for 19 consecutive days. A subset of the raw data was chosen, and events were labeled in two classes, feed-pecking and non-pecking (including singing, anomaly, and silence samples). Next, the labeled data were preprocessed through a noise removal algorithm and a band-pass filter. Then, the spectrogram and the signal envelope were extracted from each signal and fed as inputs to a VGG-16-based convolutional neural network (CNN) with two branches for 1D and 2D feature extraction followed by a binary classification head to classify feed-pecking and non-pecking events. The model achieved 92% accuracy in feed-pecking vs. non-pecking events classification with an f1-score of 91%. Finally, the entire raw dataset was processed utilizing the developed model, and the resulting feed intake estimation was compared with the ground truth data from scale measures. The estimated feed consumption showed an 8 ± 7% mean percent error on daily feed intake estimation with a 71% R2 score and 85% Pearson product moment correlation coefficient (PPMCC) on hourly intake estimation. The results demonstrate that the proposed system estimates broiler feed intake at each feeder and has the potential to be implemented in commercial farms.

Funder

University of Tennessee

United States Department of Agriculture

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3