Abstract
Purpose: The objective of this review is to describe the main technologies (automated activity monitors) available commercially and under research for the detection of estrus and calving alerts in dairy cattle. Sources: The data for the elaboration of the literature review were obtained from searches on the Google Scholar platform. This search was performed using the following keywords: reproduction, dairy cows, estrus detection and parturition, electronic devices. After the search, the articles found with a title related to the objective of the review were read in full. Finally, the specific articles chosen to be reported in the review were selected according to the method of identification of estrus and parturition, seeking to represent the different devices and technologies already studied for both estrus and parturition identification. Synthesis: Precision livestock farming seeks to obtain a variety of information through hardware and software that can be used to improve herd management and optimize animal yield. Visual observation for estrus detection and calving is an activity that requires labor and time, which is an increasingly difficult resource due to several others farm management activities. In this way, automated estrous and calving monitoring devices can increase animal productivity with less labor, when applied correctly. The main devices available currently are based on accelerometers, pedometers and inclinometers that are attached to animals in a wearable way. Some research efforts have been made in image analysis to obtain this information with non-wearable devices. Conclusion and applications: Efficient wearable devices to monitor cows’ behavior and detect estrous and calving are available on the market. There is demand for low cost with easy scalable technology, as the use of computer vision systems with image recording. With technology is possible to have a better reproductive management, and thus increase efficiency.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献