In-Season Wheat Yield Forecasting at High Resolution Using Regional Climate Model and Crop Model

Author:

Kirthiga S. M.,Patel N. R.ORCID

Abstract

In-season crop production forecasts at the regional or sub-regional scale are essential to aid in food security through early warning of harvest shortfall/surplus, tailoring crop management decisions and addressing climatic shock. Considering the efforts to establish a framework towards quantifying the crop yield prediction at regional scales are limited, we investigated the utility of combining crop model with the regional weather prediction model to forecast winter wheat yields over space. The exercise was performed for various lead-times in the regions of Punjab and Haryana for the years 2008–2009. A numerical weather prediction (NWP) model was used to generate micro-meteorological variables at different lead times (1-week, 2-weeks, 3-weeks and 5-weeks) ahead of crop harvest and used within the CERES-Wheat crop simulation model gridded framework at a spatial resolution of 10 km. Various scenarios of the yield forecasts were verified with district-wide reported yield values. Average deviations of −12 to 3% from the actual district-wise wheat yields were observed across the lead times. The 3-weeks-ahead yield forecasts yielded a maximum agreement index of 0.86 with a root mean squared error (RMSE) of 327.75 kg/ha and a relative deviation of −5.35%. The critical crop growth stages were found to be highly sensitive to the errors in the weather forecast, and thus made a huge impact on the predicted crop yields. The 5-weeks-ahead weather forecasts generated anomalous meteorological data during flowering and grain-filling crop growth stages, and thus had the highest negative impact on the simulated yields. The agreement index of the 5-week-ahead forecasts was 0.41 with an RMSE of 415.15 kg ha−1 and relative deviation of −2.77 ± 5.01. The proposed methodology showed significant forecast skill for extended space and time scale crop yield forecasting, offering scope for further research and practical applicability.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3